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Abstract The increasing use of micro- and nano-scale
components in optical, electrical, and mechanical sys-
tems makes the understanding of loss mechanisms and
their quantification issues of fundamental importance.
In many situations, performance-limiting loss is due to
scattering and radiation of waves into the surrounding
structure. In this paper, we study the problem of sys-
tematically improving a structure by altering its design
so as to decrease the loss. We use sensitivity analysis
and local gradient optimization, applied to the scat-
tering resonance problem, to reduce the loss within
the class of piecewise constant structures. For a class
of optimization problems where the material parame-
ters are constrained by upper and lower bounds, it is
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observed that an optimal structure is piecewise constant
with values achieving the bounds.
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1 Introduction and outline

There is great current interest in the design of micro-
and nano-structures in dielectric materials for storage,
channeling, amplification, compression, filtering, or, in
general, manipulation of light pulses. Such structures
have a broad range of applications from optical com-
munication technologies to quantum information sci-
ence. Energy loss is a performance-limiting concern
in the design of micro- and nano-scale components.
Thus, the question of how to design such components
with very low radiative loss is a fundamental question.
Periodic structures are important classes of structures
(Joannopoulos et al. 1995). In practice, these photonic
crystals (PCs) are structures with piecewise constant
material properties. The ability of these structures to
influence light propagation is achieved through varia-
tion of the period, the choice of material contrasts, and
through the introduction of defects.

We study the problem of scattering loss from a
PC with defects, for a class of one-dimensional wave
equations:

n2(x) ∂2
t ψ(x, t) = ∂xσ(x)∂xψ(x, t) (1)

The functions n(x) and σ(x) are strictly positive, as-
sumed to be variable within some compact set, con-
tained in a bounded open interval, a < x < b , and
constant outside of it. Without loss of generality, we
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assume σ(x) = n(x) = 1 for x < a and x > b . This cor-
responds to a normalization of the wave speed c = 1 in
the uniform medium. The region where these functions
vary with x is also referred to as the cavity. As the wave
equation (1) has real-valued and time-independent co-
efficients, it models a system which conserves energy.
Therefore, by cavity loss, we mean scattering loss; that
is, loss due to leakage of energy from the cavity. This
is in contrast to loss due to processes such as material
absorption.

Energy leakage or scattering loss from the cavity is
governed by the scattering resonances associated with
the cavity. Scattering resonances are solutions to the
eigenvalue equation satisfied by time-harmonic solu-
tions of (1) subject to outgoing radiation conditions,
imposed outside the cavity:

The scattering resonance problem (SRP) Seek non-
trivial u(x; k), such that

∂xσ(x)∂xu(x) + k2 n2(x)u(x) = 0, (2)

(∂x + ik) u = 0, x = a

(∂x − ik) u = 0, x = b (3)

At a jump discontinuity, ξ , of σ(x) or n(x), (2) is
interpreted via the flux continuity relation, obtained by
integration across the discontinuity:

σ(ξ+)∂xu(ξ+) = σ(ξ−)∂xu(ξ−), (4)

where F(ξ±) = limδ↓0 F(ξ ± δ). Corresponding to a so-
lution, u(x, k) of SRP is an outgoing time-dependent
solution ψ(x, t) = e−iωtu(x; k), ω = ck = k.

Remark 1 The above one-dimensional SRP governs
scattering resonances of slab type structures. It is a con-
sequence of Maxwell’s equations, under the assumption
of time-harmonic solutions. Variation in n(x) with σ

constant corresponds to the case of TM polarization;
variation in σ(x) with n constant corresponds to TE
polarization.

SRP is a non-self-adjoint boundary value problem
having a sequence of complex eigenvalues {k j} satis-
fying Im k j < 0 and corresponding resonance modes
u(x; k j). The modes u(x; k j) are locally square inte-
grable but not square integrable over all space. Assum-
ing there are no bound states (non-decaying in time, L2

states), the evolution of an arbitrary initial condition
for (1) admits a resonance expansion in terms of time-
exponentially decaying states of the form e−ick jtu(x; k j),
where u(·; k j) ∈ L2

loc. In particular, for any A > 0 and
compact set K, there exist ε(A, K)>0 and τ(A, K)>0,
such that for any compactly supported smooth ini-

tial conditions u(x, 0) and ∂tu(x, 0), the solution u(x, t)
satisfies:

∥
∥
∥
∥
∥
∥

u(x, t) −
∑

{km:Im km≥−A}
cm e−ickmt u(x; km)

∥
∥
∥
∥
∥
∥

L2(K)

= O(e−A(1+ε)t), t ≥ τ ; (5)

see, for example, Tang and Zworski (2000). Therefore,
the rate at which energy escapes from the cavity, mea-
sured for example by the rate of decay of field energy

within the cavity
(∫

cavity |u(x, t)|2dx
)

, is controlled by
the resonance, k∗, with largest imaginary part. The
time it takes for the energy, associated with a gen-
eral initial condition, localized in the defect, to radiate
away is τ∗ = (c|Im k∗|)−1. In practice, for example, in
experiments, initial conditions can be quite spectrally
concentrated, and therefore, the observed time-decay
rate is determined by the imaginary parts of resonances
whose real parts lie near the spectral support of the
initial condition.

Results such as the resonance expansion (5) imply
that, to understand the dynamics of scattering loss,
it suffices to consider the time-independent spectral
problem SRP.

Our goal is to apply sensitivity analysis and local gra-
dient optimization methods to the scattering resonance
problem in the class of piecewise constant structures,
to systematically decrease a cavity’s loss in a particular
frequency range. Our measure of cavity loss is the mag-
nitude of the imaginary part of a scattering resonance.

More specifically, we proceed as follows. Starting
with a particular scattering resonance, k(σ0, n0), of a
piecewise constant structure σ0(x), n0(x), we deform
the cavity structure, (σ0, n0) → (σ1 = σ0 + δσ, n1 =
n0 + δn), within the class of piecewise constant struc-
tures, so as to increase the imaginary part (decrease
| Im k |), i.e., Im k(σ1, n1) > Im k(σ0, n0). That is, we
increase the lifetime τ of the mode. In this study, δσ

and δn are chosen in the direction of the gradient
of Im k(σ0, n0), with respect to the design parameters,
which is computed using sensitivity analysis. For each
structure, along the constructed sequence of improv-
ing structures, the associated scattering resonance is
computed via Newton iteration. In some eigenvalue op-
timization problems, complications arise when eigen-
values coalesce or have multi-dimensional eigenspaces.
Such complications cannot arise in our setting because,
in one space dimension, our eigenvalue problem (SRP)
is easily seen to have simple eigenvalues.
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Summary We present a study of three classes of opti-
mization problems for SRP with σ(x), the parameter to
be optimized, and n(x) ≡ 1:

1. Opt, in which σ is piecewise constant but uncon-
strained,

2. Optarea, in which σ is piecewise constant with fixed
∫ b

a σ(s)ds, and
3. Optmax, in which σ is piecewise constant and upper

and lower bounds 1 = σmin ≤ σ(x) ≤ σmax.

Our structures lie in 
N , the set of piecewise constant
structures [a, b ], with at most N jump discontinuities.
We first explore all three classes of problems fixing,
throughout the optimization, the intervals on which σ

is constant. Then, for Optmax, we relax this constraint
and allow both the N values of σ and the N − 2 points
of discontinuity to be varied during the optimization. In
the latter case, we find (when N is taken large enough)
that the optimal structure is one where σ takes on the
value σmin or σmax on each subinterval.

Gradient methods have also been applied to achieve
better confinement, as measured by, for example,
mode-variance (Dobson and Santosa 2004) and energy
flux (Lipton et al. 2003). The objective function one
chooses to maximize is often called the Q-factor
or quality factor. In this paper, we apply gradient
methods to the more natural measure of confinement,
Q = | Im k |−1, the reciprocal imaginary part of the
resonance. Kao and Santosa (2007) recently used dis-
cretization of an integral equation (in one and two
space dimensions) and gradient methods to increase
a slightly different quality factor, namely the ratio of
real to imaginary parts of k (this measures the loss per
cycle of the resonance, viewed as an oscillator). Other,
less systematic approaches have been used in the
physics literature. One such approach proceeds by first
(a) specifying a proposed cavity mode profile, engi-
neered to minimize a physically motivated cost func-
tional, then (b) using the differential equation to solve
for the dielectric function (a coefficient in the equation)
in terms of the specified mode (Geremia et al. 2002).
Optimally localizing the eigenmodes of an inhomoge-
neous membrane, a self-adjoint analogue of our prob-
lem, has been studied in Dobson and Santosa (2004).
Another class of self-adjoint problems is the maxi-
mization of photonic band gap widths (Burger et al.
2004; Cox and Dobson 1999; Kao et al. 2005; Osher
and Santosa 2001; Sigmund and Jensen 2003). We also
note that the optimization problems we consider can
be viewed in the context of the large class of shape
optimization problems associated with elliptic partial
differential equations (Pironneau 1984).

Finally, we remark that resonances are unforced or
free modes of a leaky cavity. They can be excited via
scattering experiments, in which waves are incident on
the cavity from outside. In our simple one-dimensional
setting, part of the energy is reflected, and part is trans-
mitted. No energy is trapped because the structure has
no bound states, and, as the medium is conservative,
there is no loss to material absorbtion. Resonances
appear as peaks in the transmission coefficient as a
function of wavelength, in wavelength ranges where
the transmission is typically low. The real part of a
scattering resonance energy corresponds to the location
of the transmission peak and the imaginary part, to the
transmission peak width (Ramdani and Shipman 2007).
Thus, our optimization corresponds to the sharpening
of a transmission peak, by modification of the cavity.

1.1 General remarks on periodic or truncated
periodic structures, and defects

The above remarks are general, applying to any struc-
ture which does not have non-decaying (with time) L2

bound states. We now discuss the class of structures
which motivate this study. Waves in periodic structures,
e.g., electromagnetic, acoustic, or elastic, are governed
by a wave equation with periodic coefficients. These
equations have plane wave type states, parametrized
by a continuous spectrum equal to the union of closed
intervals called bands (photonic pass-bands). The com-
plement of the spectrum (on the real axis) consists
of the union of open intervals called gaps (photonic
band-gaps). Arbitrary spatially localized states can be
represented as a generalized Fourier superposition of
such states. Furthermore, solutions to the initial value
problem for the time-dependent wave equation in a
periodic structure disperse to zero with advancing time
(Korotyaev 1997; Cuccagna 2007).

A localized defect in a periodic structure gives rise
to discrete eigenvalues in the gaps (Figotin and Klein
1998). Thus, a periodic structure with a spatially local-
ized defect may support localized time-periodic (non-
decaying) states. In applications, photonic structures
are often truncations of periodic structures with defects;
see Fig. 2, where outside a compact set these structures
have constant physical parameters. This finite structure
no longer has localized eigenstates. Its spectrum is
continuous, and, as in the case of the spatially homo-
geneous wave equation or in the wave equation with
globally periodic coefficients, solutions tend to zero as
t → ∞ locally on any compact set. As explained above,
the manner in which the local energy tends to zero is
controlled by the resonance expansion. Note that, as
the truncation is removed, certain scattering resonance
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frequencies, associated with defect eigenstates of the
infinite structure, approach eigenvalues on the real axis
and become infinitely long-lived (non-decaying) states.

1.2 Outline

The article is structured as follows. In Section 2, we
define 
N , the class of admissible piecewise constant
structures, with at most N jump discontinuities in σ(x)

and n(x). Section 3 concerns sensitivity analysis, the
computation of variations in a scattering resonance
with respect to changes in the design parameters.
Section 4 describes two approaches to the computation
of scattering resonances: one based on use of the exact
solution in each interval where the material proper-
ties are constant, the other based on finite differences.
Section 5 contains a discussion of numerical optimiza-
tion results for the three classes of problems discussed
above.

2 Admissible piecewise constant structures:
the class �N

We shall investigate the scattering resonance problem
for a class of piecewise constant structures, which we
denote by 
N . A schematic diagram of a typical struc-
ture is presented in Fig. 1. The set 
N consists of
piecewise constant structures, (σ (x), n(x)), which for
j = 2, . . . , N, take on the values (σj, n j) on the intervals
(x j−1, x j). The endpoints x1 = a and xN = b are fixed
as are the values σ(x) = σ1 = σN+1 = 1 and n(x) = n1 =
nN+1 = 1, for x < a and x > b .

n(x) =
⎧

⎨

⎩

n1 = 1 : x < x1 = a
n j : x j−1 < x < x j, j= 2, . . . , N

nN+1 = 1 : b = xN < x
.

(6)

σ(x) =
⎧

⎨

⎩

σ1 = 1 : x < a
σj : x j−1 < x < x j, j= 2, . . . , N

σN+1 = 1 : b < x
.

(7)

Thus, a structure (σ (x), n(x)) ∈ 
N is a pair of
piecewise constant functions determined by 3N − 4
parameters:

Fig. 1 The functions σ(x) and n(x) are step functions. They are
assumed to have the value 1 to the left and right of the PC. The
jump discontinuities of σ(x) and n(x) occur at the points x j

N − 2 interior points of discontinuity: x2, . . . , xN−1 and
2(N − 1) values: σj and n j of σ(x) and n(x), respectively,
on the intervals (x j−1, x j), j = 2, . . . , N.

For simplicity, we restrict to structures at which the
set of possible points of discontinuity of σ(x) and n(x)

is the same. Our study can easily be extended to more
general structures.

3 Local optimization and sensitivity analysis

As noted in Section 1, |Im kres|−1, (Im kres < 0) is a
measure of the decay rate of the mode or life-time of
the mode, u(x; kres).

Optimization problem

Deform the structure, defined by (σ (x), n(x)), so as to
maximize Im kres.

In fact, we shall consider several optimization
problems:

1. Opt: maximize Im kres over structures (σ, n), de-
fined on [a, b ], with σ(x) = n(x) = 1 for x 
∈ [a, b ].

2. Optarea: maximize Im kres over structures (σ, n), de-
fined on [a, b ], with σ(x) = n(x) = 1 for x 
∈ [a, b ]
and

∫ b
a σ(y)dy fixed.

3. Optmax: maximize Im kres over structures (σ, n),
defined on [a, b ], with σ(x) = n(x) = 1 for x 
∈
[a, b ], such that σmin ≤ σ(x) ≤ σmax and nmin ≤
n(x) ≤ nmax.

The direction of steepest ascent of the functional
(σ, n) �→ Im kres(σ, n), is in the direction of the gradient
or, in the case of constrained optimization, a projected
gradient. Hence, we seek expressions for the gradients
of kres(σ, n) with respect to the “design parameters”
σ(x) and n(x): δkres

δσ
and δkres

δn , where the total variation
of kres is given by1:

δk =
〈
δkres

δσ
, δσ

〉

+
〈
δkres

δn
, δn

〉

. (8)

The computation of such gradients is also called sen-
sitivity analysis. We first implement sensitivity analysis

1We define 〈 f, g〉 = ∫ b
a f (x)g(x)dx.
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in the setting of general structures and, then, specialize
to the discrete setting associated with the class, 
N , of
piecewise constant structures.

3.1 Sensitivity analysis—general setting

To avoid cumbersome notation, where it causes no con-
fusion, we shall denote a resonance, kres, simply by k.
Furthermore, when studying δkres/δσ , we suppress the
dependence of kres on n(x), and similarly, we suppress
the dependence on σ(x), when we study δkres/δn.

Computation of δkres/δσ Denote by σ0 an initial struc-
ture and k(σ0), one of its scattering resonance frequen-
cies. Suppose we make a small perturbation in σ , with
n(x) = n0(x) fixed:

σ0(x) −→ σ0(x) + δσ (x). (9)

To compute δkres/δσ , we expand the scattering reso-
nance for the structure σ0 + δσ about the scattering
resonance for the structure, σ0:

σ = σ0 + δσ

u(x; σ) = u0(x) + δu

k(σ ) = k(σ0) + δk (10)

Substituting (10) into the Helmholtz equation (2) and
the outgoing boundary conditions (3), and keeping only
linear terms in the increments δσ , δu, and δk, we obtain
the system:

∂xσ0∂xδu+n2
0k2(σ0) δu=−∂x δσ ∂x u0−2k(σ0) δk n2

0 u0,

(11)

(∂x + ik(σ0)) δu = −i δk u0, x = a (12)

(∂x − ik(σ0)) δu = +i δk u0, x = b . (13)

An expression for δk can be found by deriving the
compatibility equation for the system (11–13). To de-
rive the compatibility condition, multiply (11) by u0,
integrate by parts and use (a) the equation for u0,
(2), (b) the boundary conditions for u0 and δu, (c)
that σ(a) = σ(b) = 1 and (d) that δσ (a) = δσ (b) = 0 .
This yields

δk=
∫ b

a

[

(∂xu0(x))2

2k(σ0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
]

]

δσ (x) dx,

(14)

whence

δk
δσ

(σ0) = (∂xu0(x))2

2k(σ0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
] . (15)

We are interested in increasing the value of Im k(σ )

(decreasing |Im k(σ )|). Note that, to first order in δσ ,

� [

k(σ )
] = Im k(σ0) +

〈

�
[

δk
δσ

(σ0)

]

, δσ

〉

. (16)

Thus a small perturbation, δσ of σ0, will increase the
value of Im k most rapidly, provided we choose δσ to
be in the direction of steepest ascent:

δσ = �
[

δk
δσ

(σ0)

]

= �
[

(∂xu0(x))2

2k(σ0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
]

]

. (17)

Computation of δk/δn We now consider variations
in k due to changes in n(x), with σ = σ0(x) fixed. To
compute δk/δn, we expand

n(x) = n0(x) + δn(x)

u(x; n) = u0(x) + δu(x)

k(n) = k(n0) + δk. (18)

Proceeding in a manner analogous to the above compu-
tation, we obtain

δk=
∫ b

a

[

−2k2(n0) n0(x) u2
0(x)

2k(n0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
]

]

δn(x) dx.

(19)

Therefore

δk
δn

(n0) = −2k2(n0) n0(x) u2
0(x)

2k(n0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
] ,

and the direction of steepest ascent for δn is given by

δn = �
[
δk
δn

(n0)

]

= �
[

−2k2(n0) n0(x) u2
0(x)

2k(n0)
∫ b

a n2
0u2

0 + i
[

u2
0(b) + u2

0(a)
]

]

.
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3.2 Sensitivity analysis and gradient ascent in 
N

In this subsection, we restrict the results of the previous
section on δk/δσ and δk/δn to structures (σ, n) in the
class 
N .

As introduced in Section 2, the structure of a
given PC structure is specified by 3N − 4 “design”
parameters:

x = (x2, . . . , xN−1) possible points of discontinuity of
σ(x), n(x)

s = (σ2, . . . , σN) values of σ(x) on interval (x j−1, x j),

n = (n2, . . . , nN) values of n(x) on interval (x j−1, x j).

Given a resonance, kold =k(xold, sold, nold), associated
with a structure defined by (x, s, n)old = (xold, sold, nold),
we obtain an improved structure by deforming the
initial structure in the direction of the gradient of the
objective functional evaluated at (x, s, n)old. Thus, we
obtain a new or updated structure as follows:

(x, s, n)update = (x, s, n)old + ε · (∇ Im k)old

= (x, s, n)old

+ ε · (∇x Im k, ∇s Im k, ∇n Im k
)

old .

In this paper, we use the notation ∇k to denote
the gradient with respect to all parameters: x, s, n, and
∇x k, ∇s k, ∇n k to denote gradients with respect to the
specified parameters. Equivalently and explicitly,

xnew = xold + ε ·
(

∂

∂x2
, . . . ,

∂

∂xN−1

)

Im k

∣
∣
∣
∣
(xold,sold,nold)

snew = sold + ε ·
(

∂

∂σ2
, . . . ,

∂

∂σN

)

Im k

∣
∣
∣
∣
(xold,sold,nold)

nnew = nold + ε ·
(

∂

∂n2
, . . . ,

∂

∂nN

)

Im k

∣
∣
∣
∣
(xold,sold,nold)

(20)

We discuss the choice of ε later in this section.
The following proposition gives expressions for the

partial derivatives of a scattering resonance k(x, s, n),
with respect to the design parameters:

Proposition 1 In the above notation, we have the follow-
ing equations for the partial derivatives of k(x, s, n) with
respect to the design parameters:

(1) Variations in k with respect to the jump locations,
x=(x2, . . . , xN−1), for j=2, . . . , N−1, are given by

∂k(x, s, n)

∂x j
= (σj − σ j+1) ∂xu(x−

j )∂xu(x+
j ) + (n2

j+1 − n2
j) k2(x, s, n) u2(x j, x, s, n)

i
(

u2(a, x, s, n) + u2(b , x, s, n)
) + 2k(x, s, n)

b∫

a

n2(x, x, s, n)u2(x, x, s, n)dx

, (21)

(2) Variations in k with respect to s = (σ2, . . . , σN)

satisfy, for j = 2, . . . N,

∂k(x, s, n)

∂σj
=

x j∫

x j−1

(∂xu(x′; x, s, n))2 dx′

i
(

u2(a, x, s, n) + u2(b , x, s, n)
) + 2k(x, s, n)

b∫

a

n2(x, x, s, n)u2(x, x, s, n)dx

. (22)
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(3) Variations in k with respect to n = (n2, . . . , nN), for
j = 2, . . . , N are given by:

∂k(x, s, n)

∂n j
=

−2k2(x, s, n)

x j∫

x j−1

n ju2(x′, x, s, n)dx′

i
(

u2(a, x, s, n) + u2(b , x, s, n)
) + 2k(x, s, n)

b∫

a

n2(x, x, s, n)u2(x, x, s, n)dx

. (23)

Proof To prove (22) and (23), we can apply the formu-
las from Section 3.1 with specially chosen perturbations
of (σ0, n0). The proof of (21) requires some more care
because σ(x) and ∂xu(x) are possibly discontinuous at
x=x j.

Choose a′ < a and b ′ > b . Multiply (2) by u, inte-
grate over [a′, b ′], and then integrate by parts. This
gives

u∂xu|b ′
a′ −

b ′
∫

a′

σ(∂xu)2 +
b ′
∫

a′

k2n2u2 = 0. (24)

The dependence of the terms in this equation on the
design parameter x j has been suppressed. Denote by
ż the derivative of a function z with respect to x j. We
write the integrals in (24) as the sum of integrals over
[a′, x j) and (x j, b ′]. Note that σ̇ = 0, ṅ = 0 for x 
= x j.
Differentiation of (24) with respect to x j yields:

∂

∂x j

(

u∂xu|b ′
a′

)

−
⎡

⎢
⎣2

x j∫

a′

σ∂xu∂xu̇ + 2

b ′
∫

x j

σ∂xu∂xu̇

+ σj(∂xu(x−
j ))2 − σ j+1(∂xu(x+

j ))2

⎤

⎥
⎦

+ 2

b ′
∫

a′

(kk̇n2u2 + k2n2uu̇)

+ (k2n2
ju(x j)

2 − k2n2
j+1u(x j)

2) = 0.

After a second integration by parts and using (2), we
find

∂

∂x j

(

u∂xu|b ′
a′

)

− 2u̇σ∂xu|b ′
a′ + 2

b ′
∫

a′

kk̇n2u2

= σ j+1(∂xu(x+
j ))2 − σj(∂xu(x−

j ))2 + k2n2
j+1u(x j)

2

− k2n2
ju(x j)

2,

where we used the flux condition (4) at x j. Remem-
bering σ(a′) = σ(b ′) = 1, the outgoing boundary condi-
tions (3), and the derivative of the boundary conditions,
the above equation simplifies to

ik̇(u2(a′) + u2(b ′)) + 2

b ′
∫

a′

kk̇n2u2

= (σj − σ j+1) ∂xu(x−
j )∂xu(x+

j ) + k2n2
j+1u(x j)

2

− k2n2
ju(x j)

2,

where we use the identity

σ j+1(∂xu(x+
j ))2 − σj(∂xu(x−

j ))2

=
(

σ j+1∂xu(x+
j ) − σj∂xu(x−

j )
)

︸ ︷︷ ︸

= 0 by (4)

(

∂xu(x+
j ) + ∂xu(x−

j )
)

+ (σj − σ j+1) ∂xu(x−
j )∂xu(x+

j ). (25)

Finally, we note using the explicit exponential form of
u on [a′, a] and [b , b ′], that the expression in (25) is
independent of a′ < a and b ′ > b . Letting a′ ↑ a and
b ′ ↓ b , we get the expression in (21).

For expressions (22) and (23), we begin by comput-
ing, for structures in 
N , variations of a resonance with
respect to the design parameters x, s, n.
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Let σ0(x), n0(x) denote a structure in 
N . Admissible
perturbations of (σ0, n0) are achieved through varia-
tions of the values of σ , s, and n, n, on each subinterval.
(δσ, δn), the total variations of the coefficient functions,
σ and n, due to these two kinds of variations, can
therefore be expressed as:

δσ =
N
∑

j=2

δσ

δσj
δσj (26)

δn =
N
∑

k= j

δn
δn j

δn j (27)

The terms on the right hand side of (26), (27) are
computed as follows. Note that general variation of
(σ̃ , ñ), within 
N , is of the form:

σα,μ = σ̃ +
N
∑

j=2

(σj + μδσj) χ[x j−1,x j],

nα,μ = ñ +
N
∑

j=2

(n j + μδn j) χ[x j−1,x j],

where χ[a,b ](x) denotes the characteristic function of
the interval [a, b ]. Thus,

δσ

δσj
· δσj = d

dμ

∣
∣
∣
∣
μ=0

(σj + μδσj) χ[x j−1,x j] = χ[x j−1,x j] · δσj

(28)

δn
δn j

· δn j = d
dμ

∣
∣
∣
∣
μ=0

(n j + μδn j) χ[x j−1,x j] = χ[x j−1,x j] · δn j.

(29)

To prove (22) and (23), for each fixed j ∈ {2,

. . . , N − 1}, consider the perturbation σj → σj + δσ , re-
spectively, n j → n j + δn j, with other parameters held
unchanged. Then, by (26–28) and (29), we have

δσ = χ[x j−1,x j], δn = χ[x j−1,x j]

Substitution into (14) and (19) yields the expression
(21) for ∂k/∂σj and ∂k/∂n j. ��

3.3 Gradient ascent algorithm in 
N

Using Proposition 1, we can now compute an updated
structure and approximate corresponding resonance
from the old structure:

(x, s, n)update = (x, s, n)old + ε · Im ∇kold (30)

kapprox,update = kold + ε · (∇kold, Im ∇kold) ; (31)

see (20).
The parameter, ε, is carefully chosen so to ensure

convergence of the Newton method resonance finder

with kapprox,update as initial guess, see Section 4.2. To
achieve this, we control the relative distance:

p =
∣
∣
∣
∣

kapprox,update − k
k

∣
∣
∣
∣
.

If p is fixed as control parameter for the step length,
then one finds

ε = p ·
∣
∣
∣
∣

k
(∇k, Im ∇k)

∣
∣
∣
∣
.

Algorithm 1 Steepest Ascent

Input: k0 start guess, (x, s, n)0 start structure, p control
parameter, eps accuracy for Newton’s method, M num-
ber of steepest descent steps.
Output: (x, s, n)opt optimized structure, kopt optimized
resonance.

1 kopt ← result of Newton’s method with accuracy
eps and initial guess k = k0 for the initial structure
(x, s, n)0.

2 For count = 1, . . . , M
3 Let ε ← p ·

∣
∣
∣

kopt

(∇kopt),Im ∇kopt)

∣
∣
∣ , where ∇kopt is com-

puted by Proposition (1) with kopt

4 kapprox,update ← kopt + ε · (∇kopt, Im ∇kopt
)

5 (x, s, n)opt ← (x, s, n)opt + ε · Im ∇kopt

6 kopt ← result of Newton’s method with accuracy
eps and initial guess kapprox,update for the structure
(x, s, n)opt.

7 end for

4 Numerical computation of scattering resonances

In this section, we focus on the numerical determina-
tion of scattering resonances of structures in the class

N . Then, we outline a gradient ascent method, which
finds locally optimal structures of class 
N . For our
numerical ascent scheme, we need three different ingre-
dients. First, we need a discretization of the scattering
resonance problem (SRP) (2, 3). Second, we need a
numerical routine to solve the discretized problem.
The starting point for this latter step is typically an
approximate solution of the discretized problem and
a routine that corrects this guess. Finally, we perform
a gradient ascent step, which provides an approximate
improved structure.
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We will present two different ways for the dis-
cretization of (2). The first approach (see Section
4.1) exploits the property that, for piecewise con-
stant one-dimensional structures, the equation is ex-
actly solvable on each subinterval. The solution is
determined by matching conditions for the functions
and fluxes at the subinterval endpoints. The second
approach (see Section 4.3) uses a finite difference
discretization for (2). The corrector routine for both
methods is a Newton root finder (Section 4.2),
which is adapted for the particular discretization. The

gradient ascent step is the same for both methods and
is based on Proposition 1.

4.1 Matching method

We introduce the following simplifying notation:

r j := n j√
σj

, j = 1, . . . , N + 1. (32)

The solution of (2) is given by

u(x) =
⎧

⎨

⎩

c1e−ikx : x < a
c2 jeir j+1kx + c2 j+1e−ir j+1kx : xj < x < xj+1, j = 1, . . . , N − 1

c2Neikx : b < x
, (33)

where the complex coefficients c1, . . . , c2N are deter-
mined from the conditions that u(x) be continuous on
R and such that the flux continuity relations (4) are
satisfied at the jump locations, x j.

Writing down these matching conditions gives the
following set of equations at x1:

c1e−ikx1 = c2eir2kx1 + c3e−ir2kx1

−c1e−ikx1 = r2
(

c2eir2kx1 − c3e−ir2kx1
)

,

at x j for j = 2, . . . , N − 1:

c2 j−2eir jkx j + c2 j−1e−ir jkx j = c2 jeir j+1kx j + c2 j+1e−ir j+1kx j

r j(c2 j−2eir jkx j − c2 j−1e−ir jkx j) = r j+1
(

c2 jeir j+1kx j

− c2 j+1e−ir j+1kx j
)

,

at xN :

c2N−2eirNkxN + c2N−1e−irNkxN = c2NeikxN

rN(c2N−2eirNkxN − c2N−1e−irNkxN ) = c2NeikxN .

This is a linear system of 2N equations of the form

A(k)c = 0.

The matrix A(k) ∈ C
2N×2N depends nonlinearly on the

wavenumber k and has a narrow band structure, which
will be exploited in the numerical scheme. The mode
u(x) is recovered from k and the amplitude vector c.

To impose that the solution we find is nontrivial,
we impose a normalization condition on the vector
c; for example, one can set the amplitude c1 of the

scattered part at the left end to 1. Thus, one arrives at
the following nonlinear discretized problem:

F(k, c) :=
(

A(k) · c
eT

1 c − 1

)

= 0. (34)

This is a system of 2N + 1 nonlinear equations in the
2N + 1 unknowns k, c1, . . . , c2N . Of course, one could
reduce this system by one dimension by eliminating the
fixed c1, but for notational ease, (34) will be used in the
following.

Equation (34) can be solved by any kind of nonlinear
solver. We use Newton’s method, which is outlined in
the next subsection.

4.2 Newton’s method

For a given structure in 
N , with resonance energy
k and mode amplitude vector c, we typically have an
approximate or guessed resonance k0 and amplitude
vector c0 . If ‖(k0, c0) − (k, c) ‖ is sufficiently small,
then Newton’s method applied to (34) guarantees con-
vergence. With a good initial guess, Newton’s method
converges quadratically, and few iteration steps are
necessary. Moreover, the error in the computation of k
and c (and thus of u(x)) can be estimated by Newton’s
method.

Newton iteration, applied to (34), reads

DF(k j, c j)

(

c j+1 − c j

k j+1 − k j

)

= −F(k j, c j),

where

DF(k, c) =
(

A(k) A′(k)c
eT

1 0

)
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is the Jacobian of F(k, c). Written out, this equation
yields

A(k j)c j+1 + (k j+1 − k j) · A′(k j)c j = 0

eT
1 c j+1 = 1,

which is formulated in the Newton step

A(k j)y j+1 := A′(k j)c j,

(NA) c j+1 := y j+1

eT
1 y j+1

k j+1 := k j − 1

eT
1 y j+1

.

Remarks:

– The matrices A(k) and A′(k) are explicitly known,
and their computation can easily be implemented.

– As A(k) is sparse, one can find y j+1 efficiently.
– The matrices A(k) and A′(k) can be stored with

O(8N) memory.

4.3 Finite difference discretization of resonance
problem

In this subsection, we present a second approach to
computation of scattering resonances, based on a finite
difference solution of the scattering resonance prob-
lem. For simplicity, we take n(x) ≡ 1; the required
modifications for general n(x) are straightforward.

Let U(x; k) and V(x; k) denote solutions of (2) which
are outgoing at x = a, respectively, x = b :

(∂x + ik) U(x; k) | x=a = 0, U(a; k) = 1 (35)

(∂x − ik) V(x; k) | x=b = 0, V(b ; k) = 1. (36)

For typical values of k, U(x; k) and V(x; k) are linearly
independent. Let W(k) denote the Wronskian of U and
V:

W(k) = V(x; k)σ (x)∂xU(x; k) − U(x; k)σ (x)∂xV(x; k).

(37)

W(k) is independent of x. U and V are linearly de-
pendent if and only if W(k) = 0. In this case, U and
V are proportional. Thus, if W(k∗) = 0, then U(x; k) is
outgoing at x = a and x = b , and the pair (U(x; k∗), k∗)
is a scattering resonance. As remarked in Section 1,
scattering resonance energies (zeros of W(k)) are in the
lower half plane, Im k < 0.

We now turn to a finite difference implementa-
tion. Partition [a, b ] into N intervals of length 
x =

(b − a)/N. We introduce a scheme for approximating
u(x) at discrete grid-points

u j = u(y j), y j = ( j − 1)
x, j = 1, . . . , N. (38)

We use the symmetric discretization of (2) is

σ j+ 1
2
(u j+1 − u j)

(
x)2
− σ j− 1

2
(u j − u j−1)

(
x)2
+ k2u j = 0 (39)

where y j = a + ( j − 1)
x. This discretization respects
the continuity of flux condition (4). The points of dis-
continuity of σ(x) are chosen to be grid points. The
scheme uses values of σ at staggered points y j+ 1

2
, where

σ
(

y j + 1
2

) = σ j+ 1
2
.

We shall use the scheme (39) to construct out fun-
damental set {U(x; k), V(x; k)}. To do so, we require
appropriate discretizations of the outgoing conditions
(35) and (36). These discrete outgoing conditions at
x = a and x = b are derived as follows.

At the ends of the domain, the equation becomes

u j+1 − 2u j + u j−1

(
x)2
+ k2u j = 0. (40)

This constant coefficient difference equation has, for
k
x sufficiently small, oscillatory exponential solutions

u j = A ξ j + B ξ− j, (41)

where ξ is the root of the quadratic equation z2 −
(

2 − (k
x)2
)

z + 1 = 0 corresponding to the choice of
positive square root:

ξ =
(

2 − (k
x)2
) + i

√

4 − (

2 − (k
x)2
)2

2
. (42)

The discrete solution u j is outgoing to the right pro-
vided B = 0 . Therefore, the discrete boundary condi-
tion for a solution which is outgoing to the right x =
xN = b is

V j+1 = ξ V j, j = N − 1. (43)

We also have from (36) the normalization VN = 1,
which together with (43) gives

VN−1 = ξ−1. (44)

Analogously, the discrete outgoing to the left condition
at x = a is

U j = ξ−1 U j−1, j = 2, (45)
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Fig. 2 The initial structure for all three scenarios. It consists of
22 barriers and a missing barrier in the middle. The outgoing
wave conditions are imposed on the left resp. right end of the
structure. Below is the resonance mode (modulus squared) of the
chosen initial resonance

which together with the normalization from (35), U1 =
1, gives

U2 = ξ−1. (46)

To construct the approximation to U(x; k), we ob-
tain U2 from (46) and use the expression for U j+1

obtained from (39) to propagate this value forward
to obtain U j, j = 3, . . . , N. Similarly, to construct the
approximation to V(x; k) we obtain VN−1 from (44)
and then use the expression for V j−1, obtained from
(39) to back-propagate the solution obtaining V j for
j = N − 2, . . . , 1.

Finally, we require a discretized version of the
Wronskian, W(k). The discrete Wronskian is given by:

W(k) = σ j+ 1
2

[
Uj(k)(Vj+1(k) − Vj(k)) − Vj(k)(Uj+1(k) − Uj(k))


x

]

,

(47)

which is independent of j.
Scattering resonance frequencies of our discrete ap-

proximation (39, 43, 45) are values of k for which the
discrete Wronskian is zero,

W(k) = 0. (48)

In this implementation, the numerical scheme for
finding a scattering resonance of a fixed structure,
(σ (x), n(x)), starts with an approximate scattering reso-
nance kres,0 (an approximate root of (48)) and improves
it by Newton iteration:

kres,r+1 = kres,r − W(kres,r)

∂kW(kres,r)
, r = 0, 1, . . . (49)

Remark 2 There are serious issues of instability in
searching for approximate zeros of W(k) by seeking
zeros of the discrete Wronskian, W(k), constructed
from the numerical approximations Uj and Vj. Though
in theory a constant in j, the numerically computed
Wronskian, Wcomputed(k; yj), oscillates with j due to
roundoff error. This can be overcome by applying
Newton’s method to an averaged Wronskian: W(k) =
N−1 ∑N

j=1 Wcomputed(k; yj).
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Fig. 3 Left optimal structure for Problem Opt together with optimized resonance mode. The optimized mode is more concentrated
within the defect than the initial mode. Right the path of the resonance during optimization
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Fig. 4 Left optimal structure for Problem Optarea together with optimized resonance mode. Right the path of the resonance during
optimization for scenario Optarea
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Fig. 5 Transmission diagram for the initial structure (top) and
the optimized structure (bottom) of problem Optmax. The band-
gap shifted during the optimization, and the resonance is sitting

nearly in the middle of the band-gap of the optimized structure.
To the right zoom of the resonance peak in each case. After
successful optimization, the resonance peak gets very sharp
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Fig. 6 Top left optimal structure for Problem Optmax together
with optimized resonance mode. Top right the path of the res-
onance during optimization for problem Optmax. Bottom left

optimized structure with fixed jump positions. Bottom right path
of the resonances during optimization, solid line with varying
jumps, scattered line with fixed jumps

5 Numerical results

We performed numerical gradient ascent for the three
optimization problems Opt, Optarea, and Optmax. For
all simulations, we use the same initial truncated pe-
riodic structure with a defect. Both methods, match-
ing and finite difference, were used to solve for and
optimize scattering resonances and gave consistent
results. We performed our most extensive investiga-
tions using the matching approach, due to its greater
efficiency.

The initial structure we used is shown in Fig. 2: σ(x)

is piecewise constant. There is a central defect region
of width 3
 on which σ(x) = 1. Moving outward from
the defect, σ takes on the values σ = 2 (barriers) and
σ = 1 on alternating intervals of width 
 = 0.0324. This
particular example has 22 barriers.

We have chosen k0 = 60.8183630665−0.0163109133i
as the initial resonance for all three optimization prob-
lems. The associated resonance mode is also plotted
in Fig. 2. To find this k0, an initial approximation is
guessed from the value of k at which the transmission
diagram has a peak, see Fig. 5—top. Starting with this
real value of k as an initial guess, Newton iteration was
then used to find an accurate k0.

For the problems Opt and Optarea, we kept the jump
positions fixed during the optimization, whereas for
problem Optmax, we also allowed the jump positions to
vary.

5.1 Problem Opt

Gradient ascent was applied to the above struc-
ture and yielded a (local) optimal resonance kopt =
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69.2633131254 − 0.0000004471i. The Q-factor is four
orders of magnitude larger than that of the initial
resonance. We stopped the ascent iteration with
‖∇Im kopt‖ = 4.17053 · 10−7.

In Fig. 3, the optimal structure and optimal reso-
nance mode are plotted. The path of the resonance dur-
ing the optimization in the complex plane is also plotted
in that figure. Observe the smooth turning point, indi-
cating ‖∇ Re k(σtur)‖ = 0 for a particular structure σtur

visited during optimization.

5.2 Problem Optarea

Fixing the initial area of σ imposes an additional con-
straint. The optimal resonance was found to be karea =
57.1639554364 − 0.0045894230i, whose Q-factor is only
a single order of magnitude larger than that of the
initial structure. The structure and resonance mode are
plotted in Fig. 4. Comparing the path of the resonance
in Fig. 4 with the path in Problem Opt, one sees that
the additional constraint strongly influences the search
directions of the ascent method.

5.3 Problem Optmax

In this study, we constrain the values of σ(x) to lie
between upper and lower bounds:

1 = σmin ≤ σ ≤ σmax = 3.

In contrast to the previous simulations, the jump po-
sitions can now also vary. The optimal resonance was
found to be kopt = 66.55233131 − 0.000071246i, whose
Q-factor is three orders of magnitude larger than that
of the initial structure. We stopped the ascent iteration
after the bounds for σ were reached and ‖∇xIm kopt‖ =
1.69 · 10−7.

We also ran the simulation with fixed jumps to com-
pare the optimal structures and resonances. For this
case, the optimal resonance was found to be kopt =
62.0211038345 − 0.0002390987i.

In Fig. 5, the transmission diagram of the initial
structure (top panel) together with the optimized struc-
ture of Problem Optmax (bottom panel) is shown. As
expected, the peak corresponding to the optimized res-
onance kopt is much sharper than the peak belonging to
k0. The band-gap shifted during the optimization, and

the resonance peak of the optimized structure is nearly
in the middle of the band-gap.

We note that, when allowing, in addition to the
values of σ , the locations of possible jumps, {x j}N−1

j=2 ,
to vary, that the optimal structure is found to be one
whose parameter values achieve the bounds σmin and
σmax, see Fig. 6. We have also observed, in our opti-
mization, the emergence of structures, similar to Bragg
resonators, whose intervals of constant σ are multiples
of one quarter of the wavelength in the local material.
These properties are currently under investigation.
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